

The three methodologies for assessing the energy savings potential: the experience of France

Dr Didier BOSSEBOEUF ADEME

February 2006

25 January 2006

ECCP : energy demand measures

ADEME The 3 mains methodologies 3 complementary approaches can be used for the assessment of the energy savings potential :

- 1. The international benchmarking at sectoral and end uses levels using adjusted indicators
- 2. The technico-economic approach using technologies characterisations and penetration, and relying on micro-economic assessments
- 3. The comparison between a reference scenario and a scenario with measures using technico-economic modelling (eg MEDEE).

Á D E M E

Definition of energy saving potential

- Estimate of the additional energy saving stock realisable for un given period
- Technical potential/ technico-economic potential/ exploitation rate
- Static or dynamic potential
- Adoption of efficient technologies decreases the potential, the R&d increases it as well as the economic growth.

```
25 January 2006
```

ECCP : energy demand measures

A D E M E

The benchmark approach

To compare the situation of a country to the best practices already implemented in others countries.

- The benchmark approach is relevant whatever the level of the analysis taken : nation wide, by sector or by end- uses.
- The benchmark is dynamic
- It requires a lot of data and adjustement techniques

Factors of the unit consumption dispersions

- Type of process Ł adjustement can be made
- Quality of inputs
- Size of the firms
- Age of energy consuming devices
- type of the process
- The energy management of the firm
- Qualité de l'output
- The « business » cycle
- Etc.

```
25 January 2006
```

ECCP : energy demand measures

A D E M E

Benchmarck of the specific consumption for steel in Europe

ADEME

Convergence of the specific energy consumption in the cement industry

Assessment of an overall potential for France use of a final energy intensity adjusted to the French caracteristics

Adjustements have been made on :

.Economic structure (GDP per main sectors)

•Industrial structures

•climate, « fuel mix « et dwelling size

•Modal shares in transport

•International air traffic

•car « fuel mix »

25 January 2006

ECCP : energy demand measures

A D E M E

Potential of energy intensity improvement in manufacturing in New EU Member countries: use of a target energy intensity of manufacturing

A D E M E Potential of energy intensity improvement in manufacturing if all countries had the sectoral intensities of the EU 70% 60% 50% 40% 30% 20% 10% 0% ary Lithuania Slovakia slovenia ania Rep Latvia Poland Estonia Hungary Romania Bulgaria Target indicators can be built for more detailed indicators : space heating, steel, cement, cars ECCP : energy demand measures 25 January 2006

ADEME

2

2. The Micro-Economic approach The steps to be taken

- **1. Segmentation of the reference consumption by elementary energetical operation**
- 2. Identification et qualification of energy efficiency technologies (energy performances, extra cost, penetration rate, speed of diffusion etc) through surveys or interviews.
- **3. Potential par segment for each technologies** potential = energy savings with a 100% pene

potential = energy savings with a 100% penetration rate of the technology

1. Modelling

```
25 January 2006
```

ECCP : energy demand measures

A D E M E

Energy efficiency potentials in industry A case study from France (ceren)

- gADEME study realized by CEREN on the manufactory industry field(2001)
- ${
 m q}~$ 200 efficient technologies under assessment
- \mathbf{q} Qualification of identified technologies through :
 - Energy performance
 - Investment over cost
 - Current distribution or penetration rate in 1999 in each activity branch
- q Source

Equipment manufacturer panel (CEREN) Analysis of demonstration operations Face to face interviews with industry Periodic inquiry on industry energy consumption

ECCP : energy demand measures

- q Assessment of the technical potential of energy savings and CO2 emissions reductions, linked to scenarios of technologies penetration in industry
- q Maximum potential remaining in 1999 (2001 study)

12 M toe (23% of energy consumption in industry)

20,5 M tons CO2

q 2/3 of the potential could be reached by technologies concerning the "process uses" and 1/3 by transversal actions (cold generation process, boilers, compressed air...)

25 January 2006

Energy saving potential in industry : 23% of energy consumption and 20.5 M ton CO₂

	Potential 1999 M toe	Potential 1999 % of consumpt	Of which : Process M toe	Of which Out process M toe	CO2 reduction 1999 MtCO2
Food Ind.	1.0	28	0.7	0.3	2.7
Metals	3.5	27	3.3	0.2	4.8
Equipment	1.7	24	0.8	0.9	1.2
Cement	1.0	18	0.8	0.2	1.7
Chemical	2.6	20	1.8	0.8	4.9
Paper	1.0	20	0.6	0.4	2.5
Other	1.1	22	0.6	0.5	2.6
TOTAL	12.1	23	8.5	3.6	20.5

25 January 2006

ECCP : energy demand measures

A D E M E

Technical potential for over costs in investment < 1000 /toe is 7 M toe, a reduction of 12 M t CO₂ (process + transversal)

Hypothesis and limits (cont)

- Energy performances.
 - How to be sure of the benchmarking? How can we not forget some technologies? Quid of technologies post 2010 (NTIC). Performances of each single technologies are taken constant
- The extra investisment cost:
 - No scale efficiency, same running cost running, no economic actualisation of the costs, the industrial investissement selection is based on the total investissement cost rather than on the extra cost.

```
25 January 2006
```

```
ECCP : energy demand measures
```


ADEME

Energy savings potential in building sector

- Heating and cooling :
 - Existing dwellings refurbishing potential (reduction of consumption by 200 kWh/m² /year of primary energy) : 50 TWh in 2010, 120 TWh in 2050
 - New Buildings : building codes reinforcement (2000 Thermal regulation vs previous one will provide 3 TWh gains in 2010 and 24 TWh in 2050). Reinforcement of 10% every 5 years
- Specific electricity consumption*

Potential	2020 TWh
Residential	24.7
Commercial	11.2
Public lighting	1

*40 to 100 g CO_2 /kWh according to specific electricity use

25 January 2006

ECCP : energy demand measures

A D E M E

Main measures in building sector

- AME (with existing measures)
 - Improvement of energy efficiency of new and existing buildings
 - Existing building code regulation
- AMS (with additional measures)
 - Reinforcement of the tax credit for efficient equipment and materials
 - European directive "buildings energy performance"
 - Energy savings certificates
 - Reinforcement of building codes every 5 years

- To compare a reference scenario (BAU?) with alternative scenario which incorporate energy savings measures .
- If thy are not to much differences in the level and structure of the activity between the scenario, the difference can approximate the energy saving potential

25 January 2006

ECCP : energy demand measures

A D E M E

Projections for the 4th national communication (UNFCCC)

- Two scenarios:
 - With existing measures (AME): measures implemented before the Climate Plan (1st of July 2004)
 - With additional measures (AMS) : with measures of Climate Plan implemented before the 1st of October 2005
- New projection:
 - AMS+: with all the measures of Climate Plan completely implemented (the whole potential used) and reinforcement of climate policy from 2010 in coherence with a factor 4 trajectory

Potential in transport sector (road transport)

• Evolution of energy consumption in transport (with existing measures) :

Consumption M toe	2000	2010	2020	2030	2050
Urban travels	11.3	11.3	10.9	10.5	10.5
Interurban travels	12.4	12.5	12.4	12.3	12.2
Long and medium distance Freight	12.3	13.3	15.6	18.3	22.3
Urban freight	6.3	6.5	6.5	6.4	8.0
Total	42.2	43.7	45.3	47.5	53.0

Increase of long and medium distance freight traffic

Г

Energy savings potential is much stronger at long term

Energy savings potentials are more important through organizational issues (modal shift and transport demand management)

Energy savings Mtoe	2010	2020	2030	2050
Transport organization	2.3	4.7	5.0	6.6
Technologies	1.1	1.2	1.4	1.8
Total	3.4	5.9	6.4	8.4

CO2 reductions MtCO ₂	2010	2020	2030	2050
Transport organization	6.3	13.1	13.6	17.8
Technologies	3.4	3.3	3.8	4.8
Fuel diversification *	5.4	11.9	18.6	25.3
Total	15.1	28.3	36.1	47.9

* Including biofuels contribution

25 January 2006

ECCP : energy demand measures

A D E M E

Additional main measures

- AME (with existing measures)
 - Modal shift from road (freight and passenger)
 - Speed limitation controls
 - Biofuels
 - ACEA commitment
- AMS (with additional measures)
 - Indexation of car registration certificate on CO₂ emissions for the most emissive vehicles
 - Car labeling
 - (Increase of the biofuels use : 5,75% to 2010)

CO₂-emissions reductions expected by the implementation of «Plan Climat »

Million tons CO ₂	CO₂-emissions in scenario AME In 2010	CO ₂ -emissions in scenarios AMS and AMS+ in 2010	CO ₂ -emissions reductions expected in 2010
Industry	87,6	[82,9 to 86]	[1,6 to 4,7]
Energy Production	77	68	9
Transportation	146	136	10
Building	102	[96 to 99]	[3 to 6]

ECCP : energy demand measures

